Optimization of Self-Organizing Maps Ensemble in Prediction
نویسندگان
چکیده
The knowledge discovery process encounters the difficulties to analyze large amount of data. Indeed, some theoretical problems related to high dimensional spaces then appear and degrade the predictive capacity of algorithms. In this paper, we propose a new methodology to get a better representation and prediction of huge datasets. For that purpose, an ensemble approach is used to overcome problems related to high dimensional spaces. Self-Organized Map, which allows both a fast learning and a navigation through the data is used like base classifiers to learn several feature subspaces. A genetic algorithm optimizes diversity of the ensemble thanks to an adapted error measure. The experimentations show that this measure helps to construct a concise ensemble keeping representation capabilities. Furthermore, this approach is competitive in prediction with Boosting and Random Forests.
منابع مشابه
Electrofacies clustering and a hybrid intelligent based method for porosity and permeability prediction in the South Pars Gas Field, Persian Gulf
This paper proposes a two-step approach for characterizing the reservoir properties of the world’s largest non-associated gas reservoir. This approach integrates geological and petrophysical data and compares them with the field performance analysis to achieve a practical electrofacies clustering. Porosity and permeability prediction is done on the basis of linear functions, succeeding the elec...
متن کاملGreen Product Consumers Segmentation Using Self-Organizing Maps in Iran
This study aims to segment the market based on demographical, psychological, and behavioral variables, and seeks to investigate their relationship with green consumer behavior. In this research, self-organizing maps are used to segment and to determine the features of green consumer behavior. This was a survey type of research study in which eight variables were selected from the demographical,...
متن کاملAn Approach to Collaboration of Growing Self-Organizing Maps and Adaptive Resonance Theory Maps
Collaboration of growing self-organizing maps (GSOM) and adaptive resonance theory maps (ART) is considered through traveling sales-person problems (TSP).The ART is used to parallelize the GSOM: it divides the input space of city positions into subspaces automatically. One GSOM is allocated to each subspace and grows following the input data. After all the GSOMs grow sufficiently they are conne...
متن کاملSelf-Organizing Maps for Multi-Objective Optimization
This work introduces novel recombination and mutation operators for multi-objective evolutionary algorithms using self-organizing maps in the context of Pareto optimization. The self-organizing map is actively learning from the evolution path in order to adapt the mutation step size. Standard selection operators can be used in conjunction with these operators.
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008